Cucurbit[8]uril-Derived Graphene Hydrogels
نویسندگان
چکیده
منابع مشابه
Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels.
The biocompatibility of chemoenzymatically generated dextran-acrylate hydrogels has been evaluated in vitro, using human foreskin fibroblasts, and in vivo, by subcutaneous and intramuscular implantation in Wistar rats for up to 40 days. In vitro tests show that hydrogel extracts only minimally reduced (<10%) the mitochondrial metabolic activity of fibroblasts. Direct contact of the hydrogels wi...
متن کاملGraphene oxide nanocapsules within silanized hydrogels suitable for electrochemical pseudocapacitors.
Soft biocompatible gels comprised of rolled up graphene oxide nanocapsules within the pores of silanized hydrogels may be used as electrochemical pseudocapacitors with physiological glucose or KOH as a reducing agent, affording a material suitable for devices requiring pulses with characteristic time less than a second.
متن کاملRe-shaping graphene hydrogels for effectively enhancing actuation responses.
The development of actuation-enabled materials is important for smart devices and systems. Among them, graphene with outstanding electric, thermal, and mechanical properties holds great promise as a new type of stimuli-responsive material. In this study, we developed a re-shaping strategy to construct structure-controlled graphene hydrogels for highly enhanced actuation responses. Actuators bas...
متن کاملHydrogels as reaction vessels: acenaphthylene dimerization in hydrogels derived from bile acid analogues.
Many chemical reactions which are otherwise clean often lead to the formation of multiple products. Such products may be formed due to a lack of chemo-, regio- and/or stereoselectivity. For such reactions to be useful, one should be able to control them to yield a single desired product. Of the many approaches used in this context, the use of reaction media with features different from those of...
متن کاملDegradable hydrogels derived from PEG‐diacrylamide for hepatic tissue engineering
Engineered tissue constructs have the potential to augment or replace whole organ transplantation for the treatment of liver failure. Poly(ethylene glycol) (PEG)-based systems are particularly promising for the construction of engineered liver tissue due to their biocompatibility and amenability to modular addition of bioactive factors. To date, primary hepatocytes have been successfully encaps...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Macro Letters
سال: 2019
ISSN: 2161-1653,2161-1653
DOI: 10.1021/acsmacrolett.9b00717